Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Elife ; 112022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35881438

RESUMO

The characteristics of pneumococcal carriage vary between infants and adults. Host immune factors have been shown to contribute to these age-specific differences, but the role of pathogen sequence variation is currently less well-known. Identification of age-associated pathogen genetic factors could leadto improved vaccine formulations. We therefore performed genome sequencing in a large carriage cohort of children and adults and combined this with data from an existing age-stratified carriage study. We compiled a dictionary of pathogen genetic variation, including serotype, strain, sequence elements, single-nucleotide polymorphisms (SNPs), and clusters of orthologous genes (COGs) for each cohort - all of which were used in a genome-wide association with host age. Age-dependent colonization showed weak evidence of being heritable in the first cohort (h2 = 0.10, 95% CI 0.00-0.69) and stronger evidence in the second cohort (h2 = 0.56, 95% CI 0.23-0.87). We found that serotypes and genetic background (strain) explained a proportion of the heritability in the first cohort (h2serotype = 0.07, 95% CI 0.04-0.14 and h2GPSC = 0.06, 95% CI 0.03-0.13) and the second cohort (h2serotype = 0.11, 95% CI 0.05-0.21 and h2GPSC = 0.20, 95% CI 0.12-0.31). In a meta-analysis of these cohorts, we found one candidate association (p=1.2 × 10-9) upstream of an accessory Sec-dependent serine-rich glycoprotein adhesin. Overall, while we did find a small effect of pathogen genome variation on pneumococcal carriage between child and adult hosts, this was variable between populations and does not appear to be caused by strong effects of individual genes. This supports proposals for adaptive future vaccination strategies that are primarily targeted at dominant circulating serotypes and tailored to the composition of the pathogen populations.


Assuntos
Infecções Pneumocócicas , Adulto , Portador Sadio/microbiologia , Criança , Estudo de Associação Genômica Ampla , Humanos , Lactente , Nasofaringe/microbiologia , Infecções Pneumocócicas/genética , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Sorogrupo , Streptococcus pneumoniae/genética
2.
Clin Infect Dis ; 73(9): e2680-e2689, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33124669

RESUMO

BACKGROUND: In older adults, pneumococcal disease is strongly associated with respiratory viral infections, but the impact of viruses on Streptococcus pneumoniae carriage prevalence and load remains poorly understood. Here, we investigated the effects of influenza-like illness (ILI) on pneumococcal carriage in community-dwelling older adults. METHODS: We investigated the presence of pneumococcal DNA in saliva samples collected in the 2014/2015 influenza season from 232 individuals aged ≥60 years at ILI onset, followed by sampling 2-3 weeks and 7-9 weeks after the first sample. We also sampled 194 age-matched controls twice 2-3 weeks apart. Pneumococcal DNA was detected with quantitative polymerase chain reaction assays targeting the piaB and lytA genes in raw and in culture-enriched saliva. Bacterial and pneumococcal abundances were determined in raw saliva with 16S and piaB quantification. RESULTS: The prevalence of pneumococcus-positive samples was highest at onset of ILI (42/232 [18%]) and lowest among controls (26/194 [13%] and 22/194 [11%] at the first and second samplings, respectively), though these differences were not significant. Pneumococcal carriage was associated with exposure to young children (odds ratio [OR], 2.71 [95% confidence interval {CI}, 1.51-5.02]; P < .001), and among asymptomatic controls with presence of rhinovirus infection (OR, 4.23 [95% CI, 1.16-14.22]; P < .05). When compared with carriers among controls, pneumococcal absolute abundances were significantly higher at onset of ILI (P < .01), and remained elevated beyond recovery from ILI (P < .05). Finally, pneumococcal abundances were highest in carriage events newly detected after ILI onset (estimated geometric mean, 1.21 × 10-5 [95% CI, 2.48 × 10-7 to 2.41 × 10-5], compared with preexisting carriage). CONCLUSIONS: ILI exacerbates pneumococcal colonization of the airways in older adults, and this effect persists beyond recovery from ILI.


Assuntos
Influenza Humana , Infecções Pneumocócicas , Idoso , Portador Sadio/epidemiologia , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Influenza Humana/epidemiologia , Nasofaringe , Infecções Pneumocócicas/epidemiologia , Vacinas Pneumocócicas , Saliva , Streptococcus pneumoniae/genética
3.
Virulence ; 11(1): 446-464, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32419603

RESUMO

Streptococcus suis is a Gram-positive bacterium and zoonotic pathogen that causes meningitis and sepsis in pigs and humans. The aim of this study was to identify genes required for S. suis infection. We created Tn-Seq libraries in a virulent S. suis strain 10, which was used to inoculate pigs in an intrathecal experimental infection. Comparative analysis of the relative abundance of mutants recovered from different sites of infection (blood, cerebrospinal fluid, and meninges of the brain) identified 361 conditionally essential genes, i.e. required for infection, which is about 18% of the genome. The conditionally essential genes were primarily involved in metabolic and transport processes, regulation, ribosomal structure and biogenesis, transcription, and cell wall membrane and envelope biogenesis, stress defenses, and immune evasion. Directed mutants were created in a set of 10 genes of different genetic ontologies and their role was determined in ex vivo models. Mutants showed different levels of sensitivity to survival in whole blood, serum, cerebrospinal fluid, thermic shock, and stress conditions, as compared to the wild type. Additionally, the role of three selected mutants was validated in co-infection experiments in which pigs were infected with both wild type and isogenic mutant strains. The genetic determinants of infection identified in this work contribute to novel insights in S. suis pathogenesis and could serve as targets for novel vaccines or antimicrobial drugs.


Assuntos
Genes Bacterianos , Genes Essenciais , Infecções Estreptocócicas/veterinária , Streptococcus suis/genética , Doenças dos Suínos/microbiologia , Animais , Coinfecção/microbiologia , Modelos Animais de Doenças , Evasão da Resposta Imune , Meningite , Mutação , Infecções Estreptocócicas/microbiologia , Streptococcus suis/patogenicidade , Suínos , Virulência
4.
J Antimicrob Chemother ; 74(8): 2385-2393, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31106377

RESUMO

BACKGROUND: The inflammatory response in pneumococcal infection is primarily driven by immunoreactive bacterial cell wall components [lipoteichoic acid (LTA)]. An acute release of these components occurs when pneumococcal infection is treated with ß-lactam antibiotics. OBJECTIVES: We hypothesized that non-lytic rifampicin compared with lytic ß-lactam antibiotic treatment would attenuate the inflammatory response in patients with pneumococcal pneumonia. METHODS: In the PRISTINE (Pneumonia treated with RIfampicin aTtenuates INflammation) trial, a randomized, therapeutic controlled, exploratory study in patients with community-acquired pneumococcal pneumonia, we looked at LTA release and inflammatory and clinical response during treatment with both rifampicin and ß-lactam compared with treatment with ß-lactam antibiotics only. The trial is registered in the Dutch trial registry, number NTR3751 (European Clinical Trials Database number 2012-003067-22). RESULTS: Forty-one patients with community-acquired pneumonia were included; 17 of them had pneumococcal pneumonia. LTA release, LTA-mediated inflammatory responses, clinical outcomes, inflammatory biomarkers and transcription profiles were not different between treatment groups. CONCLUSIONS: The PRISTINE study demonstrated the feasibility of adding rifampicin to ß-lactam antibiotics in the treatment of community-acquired pneumococcal pneumonia, but, despite solid in vitro and experimental animal research evidence, failed to demonstrate a difference in plasma LTA concentrations and subsequent inflammatory and clinical responses. Most likely, an inhibitory effect of human plasma contributes to the low immune response in these patients. In addition, LTA plasma concentration could be too low to mount a response via Toll-like receptor 2 in vitro, but may nonetheless have an effect in vivo.


Assuntos
Antibacterianos/uso terapêutico , Infecções Comunitárias Adquiridas/tratamento farmacológico , Inflamação/patologia , Pneumonia Pneumocócica/tratamento farmacológico , Rifampina/uso terapêutico , beta-Lactamas/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções Comunitárias Adquiridas/patologia , Feminino , Humanos , Lipopolissacarídeos/sangue , Masculino , Pessoa de Meia-Idade , Países Baixos , Plasma/química , Pneumonia Pneumocócica/patologia , Ácidos Teicoicos/sangue , Resultado do Tratamento , Adulto Jovem
5.
Nat Commun ; 10(1): 2176, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092817

RESUMO

Streptococcus pneumoniae is a common nasopharyngeal colonizer, but can also cause life-threatening invasive diseases such as empyema, bacteremia and meningitis. Genetic variation of host and pathogen is known to play a role in invasive pneumococcal disease, though to what extent is unknown. In a genome-wide association study of human and pathogen we show that human variation explains almost half of variation in susceptibility to pneumococcal meningitis and one-third of variation in severity, identifying variants in CCDC33 associated with susceptibility. Pneumococcal genetic variation explains a large amount of invasive potential (70%), but has no effect on severity. Serotype alone is insufficient to explain invasiveness, suggesting other pneumococcal factors are involved in progression to invasive disease. We identify pneumococcal genes involved in invasiveness including pspC and zmpD, and perform a human-bacteria interaction analysis. These genes are potential candidates for the development of more broadly-acting pneumococcal vaccines.


Assuntos
Predisposição Genética para Doença , Meningite Pneumocócica/genética , Streptococcus pneumoniae/genética , Adulto , Idoso , Proteínas de Bactérias/genética , Feminino , Variação Genética , Genoma Bacteriano/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Humanos , Masculino , Meningite Pneumocócica/microbiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Proteínas/genética , Streptococcus pneumoniae/isolamento & purificação
6.
Clin Infect Dis ; 68(1): 61-69, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788414

RESUMO

Background: Different clinical manifestations of invasive pneumococcal disease (IPD) have thus far mainly been explained by patient characteristics. Here we studied the contribution of pneumococcal genetic variation to IPD phenotype. Methods: The index cohort consisted of 349 patients admitted to 2 Dutch hospitals between 2000-2011 with pneumococcal bacteremia. We performed genome-wide association studies to identify pneumococcal lineages, genes, and allelic variants associated with 23 clinical IPD phenotypes. The identified associations were validated in a nationwide (n = 482) and a post-pneumococcal vaccination cohort (n = 121). The contribution of confirmed pneumococcal genotypes to the clinical IPD phenotype, relative to known clinical predictors, was tested by regression analysis. Results: Among IPD patients, the presence of pneumococcal gene slaA was a nationwide confirmed independent predictor of meningitis (odds ratio [OR], 10.5; P = .001), as was sequence cluster 9 (serotype 7F: OR, 3.68; P = .057). A set of 4 pneumococcal genes co-located on a prophage was a confirmed independent predictor of 30-day mortality (OR, 3.4; P = .003). We could detect the pneumococcal variants of concern in these patients' blood samples. Conclusions: In this study, knowledge of pneumococcal genotypic variants improved the clinical risk assessment for detrimental manifestations of IPD. This provides us with novel opportunities to target, anticipate, or avert the pathogenic effects related to particular pneumococcal variants, and indicates that information on pneumococcal genotype is important for the diagnostic and treatment strategy in IPD. Ongoing surveillance is warranted to monitor the clinical value of information on pneumococcal variants in dynamic microbial and susceptible host populations.


Assuntos
Bacteriemia/microbiologia , Bacteriemia/patologia , Variação Genética , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/patologia , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Adolescente , Adulto , Idoso , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Sorogrupo , Streptococcus pneumoniae/isolamento & purificação , Adulto Jovem
7.
BMC Infect Dis ; 18(1): 440, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157780

RESUMO

BACKGROUND: Streptococcus pneumoniae is a commensal of the human upper respiratory tract and a major cause of morbidity and mortality worldwide. This paper presents the distribution of serotypes and antimicrobial resistance in commensal S. pneumoniae strains cultured from healthy carriers older than four years of age in nine European countries. METHODS: Nasal swabs from healthy persons (age between 4 and 107 years old) were obtained by general practitioners from each country from November 2010 to August 2011. Swabs were cultured for S. pneumoniae using a standardized protocol. Antibiotic resistance was determined for isolated S. pneumoniae by broth microdilution. Capsular sequencing typing was used to identify serotypes, followed by serotype-specific PCR assays in case of ambiguous results. RESULTS: Thirty-two thousand one hundred sixty-one nasal swabs were collected from which 937 S. pneumoniae were isolated. A large variation in serotype distribution and antimicrobial resistant serotypes across the participating countries was observed. Pneumococcal vaccination was associated with a higher risk of pneumococcal colonization and antimicrobial resistance independently of country and vaccine used, either conjugate vaccine or PPV 23). CONCLUSIONS: Serotype 11A was the most common in carriage followed by serotypes 23A and 19A. The serotypes showing the highest resistance to penicillin were 14 followed by 19A. Serotype 15A showed the highest proportion of multidrug resistance.


Assuntos
Farmacorresistência Bacteriana/genética , Infecções Pneumocócicas/epidemiologia , Sorogrupo , Streptococcus pneumoniae/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Criança , Pré-Escolar , Europa (Continente)/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infecções Pneumocócicas/sangue , Infecções Pneumocócicas/tratamento farmacológico , Estudos Soroepidemiológicos , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/isolamento & purificação , Simbiose/genética , Adulto Jovem
8.
J Infect Dis ; 217(12): 1987-1996, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29528444

RESUMO

There is a lack of insight into the basic mechanisms by which Bordetella pertussis adapts to the local host environment during infection. We analyzed B. pertussis gene expression in the upper and lower airways of mice and compared this to SO4-induced in vitro Bvg-regulated gene transcription. Approximately 30% of all genes were differentially expressed between in vitro and in vivo conditions. This included several novel potential vaccine antigens that were exclusively expressed in vivo. Significant differences in expression profile and metabolic pathways were identified between the upper versus the lower airways, suggesting distinct antigenic profiles. We found high-level expression of several Bvg-repressed genes during infection, and mouse vaccination experiments using purified protein fractions from both Bvg- and Bvg+ cultures demonstrated protection against intranasal B. pertussis challenge. This study provides novel insights into the in vivo adaptation of B. pertussis and may facilitate the improvement of pertussis vaccines.


Assuntos
Bordetella pertussis/patogenicidade , Sistema Respiratório/microbiologia , Coqueluche/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Bordetella pertussis/genética , Feminino , Regulação Bacteriana da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Transcrição/genética
9.
Genome Biol Evol ; 8(4): 955-74, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26912404

RESUMO

The bacterial speciesMoraxella catarrhalishas been hypothesized as being composed of two distinct lineages (referred to as the seroresistant [SR] and serosensitive [SS]) with separate evolutionary histories based on several molecular typing methods, whereas 16S ribotyping has suggested an additional split within the SS lineage. Previously, we characterized whole-genome sequences of 12 SR-lineage isolates, which revealed a relatively small supragenome when compared with other opportunistic nasopharyngeal pathogens, suggestive of a relatively short evolutionary history. Here, we performed whole-genome sequencing on 18 strains from both ribotypes of the SS lineage, an additional SR strain, as well as four previously identified highly divergent strains based on multilocus sequence typing analyses. All 35 strains were subjected to a battery of comparative genomic analyses which clearly show that there are three lineages-the SR, SS, and the divergent. The SR and SS lineages are closely related, but distinct from each other based on three different methods of comparison: Allelic differences observed among core genes; possession of lineage-specific sets of core and distributed genes; and by an alignment of concatenated core sequences irrespective of gene annotation. All these methods show that the SS lineage has much longer interstrain branches than the SR lineage indicating that this lineage has likely been evolving either longer or faster than the SR lineage. There is evidence of extensive horizontal gene transfer (HGT) within both of these lineages, and to a lesser degree between them. In particular, we identified very high rates of HGT between these two lineages for ß-lactamase genes. The four divergent strains aresui generis, being much more distantly related to both the SR and SS groups than these other two groups are to each other. Based on average nucleotide identities, gene content, GC content, and genome size, this group could be considered as a separate taxonomic group. The SR and SS lineages, although distinct, clearly form a single species based on multiple criteria including a large common core genome, average nucleotide identity values, GC content, and genome size. Although neither of these lineages arose from within the other based on phylogenetic analyses, the question of how and when these lineages split and then subsequently reunited in the human nasopharynx is explored.


Assuntos
Genoma Bacteriano , Moraxella catarrhalis/genética , Linhagem Celular , Evolução Molecular , Genômica , Humanos , Moraxella catarrhalis/crescimento & desenvolvimento , Infecções por Moraxellaceae/microbiologia , Família Multigênica , Filogenia , Fatores de Virulência/genética
10.
Mol Microbiol ; 100(6): 972-88, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26919406

RESUMO

The human pathogen Streptococcus pneumoniae (the pneumococcus) is rare in having a strict requirement for the amino alcohol choline, which decorates pneumococcal teichoic acids. This process relies on the lic locus, containing the lic1 and lic2 operons. These operons produce eight proteins that import and metabolize choline, generate teichoic acid precursors and decorate these with choline. Three promoters control expression of lic operons, with Plic1P1 and Plic1P2 controlling lic1 and Plic2 controlling lic2. To investigate the importance of lic regulation for pneumococci, we assayed the activity of transcriptional fusions of the three lic promoters to the luciferase reporter gene. Plic1P1 , whose activity depends on the response regulator CiaR, responded to fluctuations in extracellular choline, with activity increasing greatly upon choline depletion. We uncovered a complex regulatory mechanism controlling Plic1P1 , involving activity driven by CiaR, repression by putative repressor LicR in the presence of choline, and derepression upon choline depletion mediated by LicC, a choline metabolism enzyme. Finally, the ability to regulate Plic1P1 in response to choline was important for pneumococcal colonization. We suggest that derepression of Plic1P1 upon choline depletion maximizing choline internalization constitutes an adaptive response mechanism allowing pneumococci to optimize growth and survival in environments where choline is scarce.


Assuntos
Colina/metabolismo , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Colina/genética , Feminino , Camundongos , Óperon , Infecções Pneumocócicas/microbiologia , Regiões Promotoras Genéticas , Streptococcus pneumoniae/genética , Ácidos Teicoicos/metabolismo
11.
PLoS One ; 11(2): e0149307, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26872035

RESUMO

Streptococcus pneumoniae is a common cause of sepsis. Effective complement activation is an important component of host defence against invading pathogens, whilst excessive complement activation has been associated with endothelial dysfunction and organ damage. The alternative pathway amplification loop is important for the enhancement of complement activation. Factor H is a key negative regulator of the alternative pathway amplification loop and contributes to tight control of complement activation. We assessed the effect of inhibition of the alternative pathway on sepsis associated inflammation and disease severity using human factor H treatment in a clinically relevant mice model of pneumococcal sepsis. Mice were infected intravenously with live Streptococcus pneumoniae. At the first clinical signs of infection, 17 hours post-infection, mice were treated with ceftriaxone antibiotic. At the same time purified human factor H or in controls PBS was administered. Treatment with human factor H did not attenuate disease scores, serum pro-inflammatory cytokines, or vascular permeability and did not significantly affect C3 and C3a production at 26 h post-infection. Therefore, we conclude that inhibition of the alternative complement pathway by exogenous human factor H fails to attenuate inflammation and vascular leakage at a clinically relevant intervention time point in pneumococcal sepsis in mice.


Assuntos
Antibacterianos/uso terapêutico , Permeabilidade Capilar/efeitos dos fármacos , Ceftriaxona/uso terapêutico , Infecções Pneumocócicas/tratamento farmacológico , Sepse/tratamento farmacológico , Streptococcus pneumoniae/efeitos dos fármacos , Animais , Fator H do Complemento/uso terapêutico , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Infecções Pneumocócicas/sangue , Infecções Pneumocócicas/complicações , Infecções Pneumocócicas/imunologia , Sepse/sangue , Sepse/complicações , Sepse/imunologia , Streptococcus pneumoniae/imunologia
12.
J Infect Dis ; 213(11): 1820-7, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26802141

RESUMO

Streptococcus pneumoniae is a major cause of life-threatening infections. Complement activation plays a vital role in opsonophagocytic killing of pneumococci in blood. Initial complement activation via the classical and lectin pathways is amplified through the alternative pathway amplification loop. Alternative pathway activity is inhibited by complement factor H (FH). Our study demonstrates the functional consequences of the variability in human serum FH levels on host defense. Using an in vivo mouse model combined with human in vitro assays, we show that the level of serum FH correlates with the efficacy of opsonophagocytic killing of pneumococci. In summary, we found that FH levels determine a delicate balance of alternative pathway activity, thus affecting the resistance to invasive pneumococcal disease. Our results suggest that variation in FH expression levels, naturally occurring in the human population, plays a thus far unrecognized role in the resistance to invasive pneumococcal disease.


Assuntos
Infecções Pneumocócicas/imunologia , Animais , Complemento C3/imunologia , Fator H do Complemento/imunologia , Resistência à Doença/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções Pneumocócicas/prevenção & controle
13.
PLoS One ; 10(12): e0145138, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26673231

RESUMO

Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia. Nucleotide-binding oligomerization domain-containing (NOD) 2 is a pattern recognition receptor located in the cytosol of myeloid cells that is able to detect peptidoglycan fragments of S. pneumoniae. We here aimed to investigate the role of NOD2 in the host response during pneumococcal pneumonia. Phagocytosis of S. pneumoniae was studied in NOD2 deficient (Nod2-/-) and wild-type (Wt) alveolar macrophages and neutrophils in vitro. In subsequent in vivo experiments Nod2-/- and Wt mice were inoculated with serotype 2 S. pneumoniae (D39), an isogenic capsule locus deletion mutant (D39Δcps) or serotype 3 S. pneumoniae (6303) via the airways, and bacterial growth and dissemination and the lung inflammatory response were evaluated. Nod2-/- alveolar macrophages and blood neutrophils displayed a reduced capacity to internalize pneumococci in vitro. During pneumonia caused by S. pneumoniae D39 Nod2-/- mice were indistinguishable from Wt mice with regard to bacterial loads in lungs and distant organs, lung pathology and neutrophil recruitment. While Nod2-/- and Wt mice also had similar bacterial loads after infection with the more virulent S. pneumoniae 6303 strain, Nod2-/- mice displayed a reduced bacterial clearance of the normally avirulent unencapsulated D39Δcps strain. These results suggest that NOD2 does not contribute to host defense during pneumococcal pneumonia and that the pneumococcal capsule impairs recognition of S. pneumoniae by NOD2.


Assuntos
Macrófagos Alveolares/imunologia , Proteína Adaptadora de Sinalização NOD2/genética , Fagocitose , Pneumonia Pneumocócica/imunologia , Animais , Cápsulas Bacterianas/genética , Macrófagos Alveolares/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/microbiologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade
14.
PLoS One ; 10(4): e0123702, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25901369

RESUMO

CodY, a nutritional regulator highly conserved in low G+C Gram-positive bacteria, is essential in Streptococcus pneumoniae (the pneumococcus). A published codY mutant possessed suppressing mutations inactivating the fatC and amiC genes, respectively belonging to iron (Fat/Fec) and oligopeptide (Ami) ABC permease operons, which are directly repressed by CodY. Here we analyzed two additional published codY mutants to further explore the essentiality of CodY. We show that one, in which the regulator of glutamine/glutamate metabolism glnR had been inactivated by design, had only a suppressor in fecE (a gene in the fat/fec operon), while the other possessed both fecE and amiC mutations. Independent isolation of three different fat/fec suppressors thus establishes that reduction of iron import is crucial for survival without CodY. We refer to these as primary suppressors, while inactivation of ami, which is not essential for survival of codY mutants and acquired after initial fat/fec inactivation, can be regarded as a secondary suppressor. The availability of codY- ami+ cells allowed us to establish that CodY activates competence for genetic transformation indirectly, presumably by repressing ami which is known to antagonize competence. The glnR codY fecE mutant was then found to be only partially viable on solid medium and hypersensitive to peptidoglycan (PG) targeting agents such as the antibiotic cefotaxime and the muramidase lysozyme. While analysis of PG and teichoic acid composition uncovered no alteration in the glnR codY fecE mutant compared to wildtype, electron microscopy revealed altered ultrastructure of the cell wall in the mutant, establishing that co-inactivation of GlnR and CodY regulators impacts pneumococcal cell wall physiology. In light of rising levels of resistance to PG-targeting antibiotics of natural pneumococcal isolates, GlnR and CodY constitute potential alternative therapeutic targets to combat this debilitating pathogen, as co-inactivation of these regulators renders pneumococci sensitive to iron and PG-targeting agents.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Streptococcus pneumoniae/citologia , Streptococcus pneumoniae/metabolismo , Amidoidrolases/metabolismo , Proteínas de Bactérias/genética , Cefotaxima/farmacologia , Parede Celular/efeitos dos fármacos , Hidrólise , Mutação , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Transformação Genética
15.
PLoS One ; 10(3): e0123690, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798828

RESUMO

A new phenotypic test, called the Carbapenem Inactivation Method (CIM), was developed to detect carbapenemase activity in Gram-negative rods within eight hours. This method showed high concordance with results obtained by PCR to detect genes coding for the carbapenemases KPC, NDM, OXA-48, VIM, IMP and OXA-23. It allows reliable detection of carbapenemase activity encoded by various genes in species of Enterobacteriaceae (e.g., Klebsiella pneumoniae, Escherichia coli and Enterobacter cloacae), but also in non-fermenters Pseudomonas aeruginosa and Acinetobacter baumannii. The CIM was shown to be a cost-effective and highly robust phenotypic screening method that can reliably detect carbapenemase activity.


Assuntos
Proteínas de Bactérias/genética , Bactérias Gram-Negativas/enzimologia , beta-Lactamases/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , DNA Bacteriano/análise , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , Enterobacteriaceae/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Reação em Cadeia da Polimerase , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Análise de Sequência de DNA , beta-Lactamases/metabolismo
17.
PLoS One ; 10(2): e0118181, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25700108

RESUMO

Toll-like receptors (TLR) and the downstream adaptor protein MyD88 are considered crucial for protective immunity during bacterial infections. Streptococcus (S.) pneumoniae is a human respiratory pathogen and a large majority of clinical pneumococcal isolates expresses an external polysaccharide capsule. We here sought to determine the role of pneumococcal capsule in MyD88-mediated antibacterial defense during S. pneumonia pneumonia. Wild type (WT) and Myd88(-/-) mice were inoculated intranasally with serotype 2 S. pneumoniae D39 or with an isogenic capsule locus deletion mutant (D39∆cps), and analysed for bacterial outgrowth and inflammatory responses in the lung. As compared to WT mice, Myd88(-/-) mice infected with D39 demonstrated a modestly impaired bacterial clearance accompanied by decreased inflammatory responses in the lung. Strikingly, while WT mice rapidly cleared D39∆cps, Myd88(-/-) mice showed 105-fold higher bacterial burdens in their lungs and dissemination to blood 24 hours after infection. These data suggest that the pneumococcal capsule impairs recognition of TLR ligands expressed by S. pneumoniae and thereby partially impedes MyD88-mediated antibacterial defense.


Assuntos
Cápsulas Bacterianas/imunologia , Fator 88 de Diferenciação Mieloide/genética , Pneumonia Bacteriana/imunologia , Polissacarídeos Bacterianos/imunologia , Streptococcus pneumoniae/imunologia , Animais , Cápsulas Bacterianas/genética , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/imunologia
18.
BMC Genomics ; 15: 958, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25373505

RESUMO

BACKGROUND: Bacterial respiratory tract infections, mainly caused by Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are among the leading causes of global mortality and morbidity. Increased resistance of these pathogens to existing antibiotics necessitates the search for novel targets to develop potent antimicrobials. RESULT: Here, we report a proof of concept study for the reliable identification of potential drug targets in these human respiratory pathogens by combining high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics. Approximately 20% of all genes in these three species were essential for growth and viability, including 128 essential and conserved genes, part of 47 metabolic pathways. By comparing these essential genes to the human genome, and a database of genes from commensal human gut microbiota, we identified and excluded potential drug targets in respiratory tract pathogens that will have off-target effects in the host, or disrupt the natural host microbiota. We propose 249 potential drug targets, 67 of which are targets for 75 FDA-approved antimicrobials and 35 other researched small molecule inhibitors. Two out of four selected novel targets were experimentally validated, proofing the concept. CONCLUSION: Here we have pioneered an attempt in systematically combining the power of high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics to discover potential drug targets at genome-scale. By circumventing the time-consuming and expensive laboratory screens traditionally used to select potential drug targets, our approach provides an attractive alternative that could accelerate the much needed discovery of novel antimicrobials.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/genética , Genes Essenciais , Bactérias/efeitos dos fármacos , Linhagem Celular , Sequência Conservada/genética , Elementos de DNA Transponíveis/genética , Trato Gastrointestinal/imunologia , Humanos , Redes e Vias Metabólicas/genética , Testes de Sensibilidade Microbiana , Microbiota , Anotação de Sequência Molecular , Família Multigênica , Fases de Leitura Aberta/genética , Reprodutibilidade dos Testes , Frações Subcelulares/metabolismo
19.
BMC Genomics ; 15: 863, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25283442

RESUMO

BACKGROUND: Pneumococcus is a major human pathogen and the polysaccharide capsule is considered its main virulence factor. Nevertheless, strains lacking a capsule, named non-typeable pneumococcus (NT), are maintained in nature and frequently colonise the human nasopharynx. Interest in these strains, not targeted by any of the currently available pneumococcal vaccines, has been rising as they seem to play an important role in the evolution of the species. Currently, there is a paucity of data regarding this group of pneumococci. Also, questions have been raised on whether they are true pneumococci. We aimed to obtain insights in the genetic content of NT and the mechanisms leading to non-typeability and to genetic diversity. RESULTS: A collection of 52 NT isolates representative of the lineages circulating in Portugal between 1997 and 2007, as determined by pulsed-field gel electrophoresis and multilocus sequence typing, was analysed. The capsular region was sequenced and comparative genomic hybridisation (CGH) using a microarray covering the genome of 10 pneumococcal strains was carried out. The presence of mobile elements was investigated as source of intraclonal variation. NT circulating in Portugal were found to have similar capsular regions, of cps type NCC2, i.e., having aliB-like ORF1 and aliB-like ORF2 genes. The core genome of NT was essentially similar to that of encapsulated strains. Also, competence genes and most virulence genes were present. The few virulence genes absent in all NT were the capsular genes, type-I and type-II pili, choline-binding protein A (cbpA/pspC), and pneumococcal surface protein A (pspA). Intraclonal variation could not be entirely explained by the presence of prophages and other mobile elements. CONCLUSIONS: NT circulating in Portugal are a homogeneous group belonging to cps type NCC2. Our observations support the theory that they are bona-fide pneumococcal isolates that do not express the capsule but are otherwise essentially similar to encapsulated pneumococci. Thus we propose that NT should be routinely identified and reported in surveillance studies.


Assuntos
Genômica , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação , Cápsulas , Variação Genética , Genoma Bacteriano/genética , Humanos , Portugal , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/fisiologia , Fatores de Virulência/genética
20.
PLoS One ; 9(2): e89541, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586856

RESUMO

Since Streptococcus pneumoniae transmits through droplet spread, this respiratory tract pathogen may be able to survive in saliva. Here, we show that saliva supports survival of clinically relevant S. pneumoniae strains for more than 24 h in a capsule-independent manner. Moreover, saliva induced growth of S. pneumoniae in growth-permissive conditions, suggesting that S. pneumoniae is well adapted for uptake of nutrients from this bodily fluid. By using Tn-seq, a method for genome-wide negative selection screening, we identified 147 genes potentially required for growth and survival of S. pneumoniae in saliva, among which genes predicted to be involved in cell envelope biosynthesis, cell transport, amino acid metabolism, and stress response predominated. The Tn-seq findings were validated by testing a panel of directed gene deletion mutants for their ability to survive in saliva under two testing conditions: at room temperature without CO2, representing transmission, and at 37 °C with CO2, representing in-host carriage. These validation experiments confirmed that the plsX gene and the amiACDEF and aroDEBC operons, involved in respectively fatty acid metabolism, oligopeptide transport, and biosynthesis of aromatic amino acids play an important role in the growth and survival of S. pneumoniae in saliva at 37 °C. In conclusion, this study shows that S. pneumoniae is well-adapted for growth and survival in human saliva and provides a genome-wide list of genes potentially involved in adaptation. This notion supports earlier evidence that S. pneumoniae can use human saliva as a vector for transmission.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Infecções Pneumocócicas/genética , Infecções Pneumocócicas/mortalidade , Saliva/microbiologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Humanos , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...